An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development.
نویسندگان
چکیده
Invertase activity is thought to play a regulatory role during early kernel development by converting sucrose originating from source leaves into hexoses to support cell division in the endosperm and embryo. Invertases are regulated at the posttranslational level by small protein inhibitors, INVINHs. We found that in maize (Zea mays), an invertase inhibitor homolog (ZM-INVINH1) is expressed early in kernel development, between 4 and 7 d after pollination. Invertase activity is reduced in vitro in the presence of recombinant ZM-INVINH1, and inhibition is attenuated by pre-incubation with sucrose. The presence of a putative signal peptide, fractionation experiments, and ZM-INVINH1::green fluorescent protein fusion experiments indicate that the protein is exported to the apoplast. Moreover, association of ZM-INVINH1 with the glycoprotein fraction by concanavalin A chromatogaphy suggests that ZM-INVINH1 interacts with an apoplastic invertase during early kernel development. ZM-INVINH1 was localized to the embryo surrounding region by in situ analysis, suggesting that this region forms a boundary, compartmentalizing apoplast invertase activity to allow different embryo and endosperm developmental rates.
منابع مشابه
Discolored1 (DSC1) is an ADP-Ribosylation Factor-GTPase Activating Protein Required to Maintain Differentiation of Maize Kernel Structures
The embryo and endosperm are the products of double fertilization and comprise the clonally distinct products of angiosperm seed development. Recessive mutations in the maize gene discolored1 (dsc1) condition inviable seed that are defective in both embryo and endosperm development. Here, detailed phenotypic analyses illustrate that discolored mutant kernels are able to establish, but fail to m...
متن کاملEarly carbon mobilization and radicle protrusion in maize germination
Considerable amounts of information is available on the complex carbohydrates that are mobilized and utilized by the seed to support early seedling development. These events occur after radicle has protruded from the seed. However, scarce information is available on the role of the endogenous soluble carbohydrates from the embryo in the first hours of germination. The present work analysed how ...
متن کاملSoluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize.
To distinguish their roles in early kernel development and stress, expression of soluble (Ivr2) and insoluble (Incw2) acid invertases was analyzed in young ovaries of maize (Zea mays) from 6 d before (-6 d) to 7 d after pollination (+7 d) and in response to perturbation by drought stress treatments. The Ivr2 soluble invertase mRNA was more abundant than the Incw2 mRNA throughout pre- and early ...
متن کاملZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development.
To study the influence of PINFORMED1 (PIN1)-mediated auxin transport during embryogenesis and endosperm development in monocots, the expression pattern of the three identified ZmPIN1 genes was determined at the transcript level. Localization of the corresponding proteins was also analyzed during maize (Zea mays) kernel development. An anti-indole-3-acetic acid (IAA) monoclonal antibody was used...
متن کاملEarly oleate deficiency leads to severe defects in fetal rat liver development
Objective(s): Oleate can be produced through de novo synthesis, which contributes to biological processes and signaling pathways. However, the role of this non-essential fatty acid in hepatic development remains unclear. The current study aimed to evaluate the influence of early oleate deficiency induced by the inhibitor of de novo oleate synthesis MF-438 on fetal rat ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 134 1 شماره
صفحات -
تاریخ انتشار 2004